
© Copyright 2004-2017 CardWerk Technologies, 2615 George Busbee Pkwy, Suite 11-312, Kennesaw, GA 30144, USA. All rights
reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and

decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization
of CardWerk Technologies and its licensors, if any.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT, ARE

DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID

CardWerk SmartCard API (Professional)

Developer Guide rev.06JUN2017

Overview ... 2

Product Offerings .. 3

Summary of Advantages .. 3

List of Features .. 3

CardWerk SmartCard API (Professional) Development Kit .. 4

SmartCard API Framework Architecture.. 6

Namespace overview ... 6

High-level API .. 8

Working with the CardHandle.. 8

The Framework ... 10

Smart Card UI ... 11

Card Reader Configuration .. 12

Utility Classes ... 14

PC/SC Workgroup level API .. 15

CT-API level API .. 16

Deployment ... 17

Card Terminal Configuration ... 18

CardWerk Technologies

2615 George Busbee Pkwy, Suite 11-312

Kennesaw, GA 30144

USA

support@smartcard-api.com

www.smartcard-api.com

SmartCardAPI

Developer Guide

file:///C:/develop/SmartCardAPI/support@smartcard-api.com
http://www.smartcard-api.com/

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 2 of 21

Overview

Smart cards are becoming increasingly popular as a means for convient personal security and authentication in many

application areas such as e-Banking and e-Commerce. Many Windows applications have been written supporting smart

cards for various purposes. Millions of users have a smart card in their pocket without even knowing – as SIM card it has

become part of every GSM phone and EMV-based transactions.

With the .NET technology, a framework for future application development was introduced by Microsoft. A vast number

of Windows applications are based on the .NET Framework. The .NET Framework became even more important for

application developers with the release of the .NET Compact Framework.

As of today, however, the .NET Framework does not include smart card support. Therefore application developers using

.NET had to resort to creating their own P/Invoke wrappers to access the Windows native PC/SC Workgroup API from

within the .NET environment. If done right, a difficult and time consuming task, time that would better be spent on

developing the application itself.

CardWerk SmartCard API (Professional) is the first .NET class library and framework for easy access to smart card readers

and smart cards from .NET applications. Using the CardWerk SmartCard API (Professional) an application developer no

longer needs to deal with P/Invoke stubs, but rather uses a convenient API that provides an even higher level of

abstraction than the Windows native PC/SC Workgroup API.

CardWerk SmartCard API (Professional) is not just a wrapper for the PC/SC Workgroup API but provides a framework that

can be extended to support any smart card reader technology. Indeed, CardWerk SmartCard API (Professional) comes

with support for CT-API based smart card readers. The CT-API is a German standard for smart card reader access that

includes advanced features such as multiple slots, PIN pad, display and secure PIN entry.

Application developers familiar with the Java programming environment may recognise the similar concept of the

OpenCard Framwork for the Java platform. From a very simple point of view, CardWerk SmartCard API (Professional)

could be said to provide the same services to the .NET environment as the OpenCard Framwork to the Java environment.

The design of CardWerk SmartCard API (Professional) was influenced by the Java OpenCard Framwork and application

developers familiar with OpenCard will quickly become acquainted with the CardWerk SmartCard API (Professional).

However, the CardWerk SmartCard API (Professional) is not just a bland copy of the OpenCard Framework, but a major

improvement – easier to use yet with greatly advanced features and full .NET utilization.

We took this idea even a step further by introducing CardModule assemblies to allow integration of some popular smart

cards with a few lines of code and without knowing anything about the actual card edge interface on APDU level.

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 3 of 21

Product Offerings

CardWerk SmartCard API (Professional) is available as a software development kit (SDK). It includes extensive

documentation and many sample applications with source code.

Buying the CardWerk SmartCard API (Professional) development kit entitles you to redistribute the binary CardWerk

SmartCard API (Professional) assembly to your customers without paying additional royalties.

Maintenance contracts, site licenses, and source code licences are available. We also offer on site training and custom

development and consulting services.

Summary of Advantages

 Reduces development time by eliminating the need to create your own P/Invoke wrapper and by providing a

higher level and more convenient API.

 Makes your applications independent of the underlaying smart card system. The application can be used with

PC/SC Workgroup API smart card readers and CT-API smart card readers without any change.

 Continuously maintained product that is extended to cope with future needs.

 Contactless card classes for DESFire, iCLASS, Mifare can be written on top of SmartCard API. We even provide

some sample classes to get you up and coding in no time.

 Proprietary reader systems can be supported via custom adapter modules.

List of Features

The CardWerk SmartCard API (Professional) has many advanced features, such as support for secure PIN entry, not found

in similar products. The following list is an overview of the more important features:

 Completely implemented in .NET based on the common language system (CLS) subset.

 Supports C#, VisualBasic.NET (VB.NET), J#, Delphi for .NET and every other CLS compliant .NET programming

language.

 Supports all PC/SC Workgroup API compatible smart card readers.

 Supports T=0 and T=1 asynchronous smart cards.

 Supports contactless cards (via PC/SC 2.01)

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 4 of 21

 Supports synchronous memory cards with CT-API card readers and some PC/SC Workgroup compliant card

readers and proprietary APIs such as SCM's MCARD API.

 OMNIKEY's Scardsyn API for storage cards via CardModule.MemoryCard.dll assembly.

 HID iCLASS card support available upon request.

 Supports transmission of APDUs over TPDU based APIs such as the PC/SC Workgroup API.

 Supports all CT-API compatible smart card readers.

 Supports parallel usage of multiple smart card readers.

 Framework can be extended to support proprietary smart card reader APIs.

 Includes card reader configuration tool

 Supports secure PIN entry for PIN verification and PIN modification with PC/SC and CT-API smart card terminals

that include a PIN pad.

 Supports complete GUI-less operation, but also provides convient customizable GUI-based user dialogs for PIN

verification and PIN modification.

 GUI elements localized in English and German. Additional languages can be added in future releases upon

request.

 Supports asynchronous, event driven applications and synchronous applications.

 Provides a convenient high level API, a low level PC/SC Workgroup API compliant API and a low level CT-API

based API.

 Software development kit includes various sample applications with documented source code.

 Supports NET Framework 2.0 and greater

CardWerk SmartCard API (Professional) Development Kit

The CardWerk SmartCard API (Professional) is delivered with a development kit that contains extensive documentation

and sample applications including source code.

 Binary redistributable assemblies.

 Technical documentation in PDF format.

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 5 of 21

 Extensive online reference documentation in CHM help format.

 Fully commented C# sample applications including source code.

The following C# sample applications are included:

 "HelloCard“ - HelloWorld-type sample program to demonstrate card detection. If the card responds to a PC/SC 2.01

ReadUID() APDU, the UID is displayed. Otherwise a contact card is assumed. In either case the ATR is displayed.

 "HelloICLASS" - Allows access to HID-issued PACS bit data. Extracts facility code and card number for some standard

card formats.

 "HelloMemoryCard" - Sample program to access storage cards such as SLE 4442, SLE 4428, I2C and cards via managed

wrapper code for OMNIKEY scardsyn.dll propprietary, unmanaged API

 "HelloMifare“ - HelloWorld-type sample program to demonstrate access of contactless storage cards via CardWerk's

PC/SC 2.01 part 3 CardModule.CLIC.

 "HelloPIV“ – Sample for CAC, NIST PIV and TWIC cards used by U.S. Government agencies and contractors. Shows how

to read a CHUID. Extracts Expiration date, GUID and FASCN from raw CHUID data. Reads X509 certificate and card

capability containers

 "HelloPROX“ – Sample for HID PROX card access. Includes code to extract card number (CN) and facility code (FAC)

applying some of the known standard HID card formats.

 "HelloGeldkarte" – Reads the current available amount of a German GeldKarte electronic purse. (prev releases:

Taschenkartenleser)

 "HelloSim" – Reads the phone book entries of a GSM SIM card. This sample also demonstrates PIN verification

and modification. (prev releases: SimTrivia)

 "HelloMct" – Reads some data from a German health insurance smart card (KSK and eGK supported). This sample

demonstrates working with synchronous memory cards.(prev releases: MctTrivia)

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 6 of 21

SmartCard API Framework Architecture

Namespace overview

The classes of CardWerk's SmartCard API Framework are grouped into five distinct namespaces. The classes of all

namespaces are bundled in the single .NET assembly "SmartCard.dll".

Namespace Abstraction

Subsembly.SmartCard High level access to smart card reader and smart cards,

completely independent of actual smart card reader API or driver

technology.

Subsembly.SmartCard.PcSc Low level PC/SC Workgroup API compliant smart card reader

access. Provides full PC/SC Workgroup API functionality.

Subsembly.SmartCard.CtApi Low level CT-API based smart card reader access. Provides full

CT-API and CT-BCS functionality.

Subsembly.SmartCard.MCard Low level MCARD API based memory card access and SmartCard

API Framework extension. Depends on Subsembly.SmartCard.PcSc

and Subsembly.SmartCard.

SmartCardAPI.CardModule.xyz - assemblies to support a variety of card edges

CardModules are only available for SmartCardAPI(Professional).

.CAC U.S. DOD Common Access Card (CAC) card module including

helper functions to access CAC card. Requires

Subsembly.SmartCard.

.CLICS Contactless integrated circuit modul according to PC/SC 2.01 part

3. Requires Subsembly.SmartCard.

.HID.ICLASS HID iCLASS raw Wiegand data access via OMNIKEY desktiop

readers. Supports PACS bit access on OMNIKEY readers. Upon

request.

.HID.PROX Provides access to HID Prox card raw Wiegand data on OMNIKEY

card readers.

.MemoryCard Supports storage cards (i.e synchronous cards) on OMNIKEY

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 7 of 21

Namespace Abstraction

contact card readers.

.MifareClassic NXP Mifare Classic card access via PC/SC 2.01 part 3 compliant

card readers. Requires CardModule.CLICS.

.NfcTag NXP Mifare Ultralight and NTAG support

.PIV U.S. Gov. NIST PIV Card API including helper functions to access

CHUID, FASCN, GUID and Expiration Date. Depends on

Subsembly.SmartCard. Not available for Express version.

SmartCardAPI.DataModule.xyz - assemblies to support commonly used data blobs

DataModules are only available for SmartCardAPI(Professional).

.Wiegand Convenience class for raw Wiegand Data. Has built-in methods tyo

extract data items fos known card fornats such as HID H10301 26

bit format and many more. Can be used with iCLASS and Prox

CardModule.

SmartCardAPI.ReaderModule.xyz - assemblies to support proprietary reader APIs

ReaderModules are only available for SmartCardAPI(Professional).

.Omnikey.Scardsyn .NET wrapper for OMNIKEY scardsyn.dll and scardsynx64.dll.

.Omnikey.SecureChannel To establish secure channel between host application and

OMNIKEY reader. Contains HID proprietary crypto protocol.

SmartCardAPI.SecurityModule.xyz - assemblies for cryptographic operations

SecurityModules are only available for SmartCardAPI(Professional).

The namespace Subsembly.SmartCard defines an interface ICardTerminal that can be implemented in order to support

any smart card reader API or driver. CardWerk SmartCard API (Professional) includes three implementations of this

interface. One for PC/SC Workgroup API compliant smart card readers, one CT-API based implementation, and one

MCARD API based memory card implementation.

As a general rule, applications should be solely based on the high level API provided by the namespace

Subsembly.SmartCard whenever possible. This guarantees full independence of the underlying native API and therefore

support for future smart card APIs. Low level, often unmanaged libraries may still provide card reader specific

functionality. However the application can be coded on top of a much higher, easier to use abstraction layer.

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 8 of 21

High-level API

The High-level API is located in the Subsembly.SmartCard namespace which represents the heart of the CardWerk

SmartCard API (Professional) product.

Working with the CardHandle

From the application point of view the high level API consists of the two highly abstracted primary classes

CardTerminalManager and CardHandle. The CardTerminalManager is a singleton class that acts as the central hub of the

SmartCard API Framework. The CardTerminalManager controls all registered card terminals and monitors card terminal

slots for card insertion or removal, raising events as necessary. Once a card is inserted, a CardHandle instance can be

acquired for it from the CardTerminalManager. Acquiring such instance automatically powers up the card at which time

an answer to reset (ATR) should be available. As the CardHandle class handles any access to a smart card the host

application must keep a reference to the CardHandle instance throughout the whole card session.

Among others, the following methods are provided by the CardHandle class. These methods allow ISO7816-4 compliant

card communication without having to go into details of the underlaying APDUs. Please refer to the CardWerk SmartCard

API (Professional) reference for a detailed description of all methods of the CardHandle class.

Method / Property Description

SendCommand Sends any command APDU to the card and returns the response

APDU.

SelectApplication Selects a card application by its application ID.

SelectFile Selects an elementary file (EF) on the card.

ReadBinary Reads binary data from the currently selected elementary file

(EF) with transparent structure.

UpdateBinary Updates binary data in the currently selected elementary file (EF)

with transparent structure.

ReadRecord Reads a record from the currently selected elementary file (EF)

with record structure.

UpdateRecord Updates a record in the currently selected elementary file (EF)

with record structure.

VerifyPin Performs a PIN verification either using secure PIN entry of the

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 9 of 21

Method / Property Description

card terminal, if supported, or using an ordinary dialog box.

ChangePin Performs verifying and changing of a PIN either using some secure

means provided by the card terminal or using an ordinary dialog

box.

If the card edge supports more than these basic functions, you can extend the card handle class to adapt your host

application to your card.

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 10 of 21

The Framework

The following figure provides a more detailed overview of the SmartCard API Framework constructed by the classes of

the Subsembly.SmartCard namespace. In addition to the classes shown in this figure there are several utility classes

explained further below.

For each card reader slot there is an instance of the class CardTerminalSlot that connects the CardTerminalManager and

the CardHandle to the ICardTerminal interface.

Additional types of card readers can be integrated into the framework by implementing the ICardTerminal interface. The

CardTerminalBase provides a boilerplate implementation of this interface that can be used as a base class for your

particular card reader integration. The CardWerk SmartCard API (Professional) already includes three implementations of

the ICardTerminal interface based on the CardTerminalBase class. The CardPcScTerminal class implements the

ICardTerminal interface based on the native PC/SC Workgroup API, the CardCtApiTerminal class implements the interface

based on a native 32 Bit CT-API Windows DLL.

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 11 of 21

Smart Card UI

The high level Subsembly.SmartCard namespace includes optional GUI elements that can be completely customized or

completely replaced. The GUI elements are abstracted away behind the ICardDialogs interface. An application that wants

to replace the standard GUI provided by the CardDialogs class simply implements this interface and pass it to the

methods that need it. Alternatively the default CardDialogs class can be instantiated and customized through various

parameters, or the application can restrict itself to methods that do not show any GUI elements.

The following picture shows the default insert card prompt dialog box implemented by the CardDialogs class. The actual

prompt text is provided by the calling application. By clicking on the Setup button the user can make some last minute

changes to the card reader configuration. At the bottom the names of all card readers available for card insertion are

listed.

The following picture shows the default verify PIN dialog box implemented by the CardDialogs class. Again, the prompt

text is provided by the calling application. At the bottom the name of the card reader is shown.

Finally, the following picture shows the default change PIN dialog box implemented by the CardDialogs class. Again the

prompt text is provided by the calling application and the name of the card reader is shown.

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 12 of 21

Again, the application can provide its own dialog boxes and is not required to use the standard dialog boxes provided by

the CardWerk SmartCard API (Professional).

Card Reader Configuration

For CT-API support a smart card application needs configuration information such as the name of the CT-API DLL of the

card reader and a port number. This and other configuration information is managed by the CardTerminalRegistry class.

The CardTerminalRegistry uses an XML file to persistently store this configuration information.

The CardTerminalRegistry also implements a card reader configuration tool that can be launched through a simple call to

the ShowConfigurator method of the CardTerminalRegistry class or through the CardTerminalConfigurator.exe that is

included with the CardWerk SmartCard API (Professional).

The following screenshot shows the card terminal configurator with four configured card terminals.

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 13 of 21

Among other information, a configuration entry in the card terminal configuration file contains the following XML

elements.

XML Tag applies to Purpose

AssignedName all Unique identification of a configured card terminal.

AssemblyName all Name of the assembly that contains the actual ICardTerminal

implementation that plugs into the framework.

ClassName all Fully qualified name of class that contains the actual ICardTerminal

implementation that plugs into the framework

Enabled all Indicates whether this card reader shall be used or not.

UseSecurePin all Flag that indicates whether secure PIN entry shall be used, or not.

ReaderName PC/SC Name of card reader as it is known by the PC/SC Workgroup API.

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 14 of 21

XML Tag applies to Purpose

CtApiDll CT-API Filename of the DLL that implements the CT-API specification for

the configured CT-API card reader.

CtApiPort CT-API Port number of port that the card reader connects to.

Utility Classes

The Subsembly.SmartCard namespace provides several utility classes that help procesing smart card commands and smart

card data. The following table provides an overview of the utility classes included in the Subsembly.SmartCard

namespace.

Class Purpose

CardCommandAPDU To create, parse and modify ISO 7816-4 compliant command APDUs with short

or extended length fields.

CardResponseAPDU To create, parse and modify ISO 7816-4 compliant response APDUs.

CardDataObject To create, parse and modify BER-TLV or SIMPLE-TLV encoded data objects or

sequences of such data objects.

CardHex Utility functions for converting hexadecimal strings to and from byte arrays or

numeric values.

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 15 of 21

PC/SC Workgroup level API

The PC/SC Workgroup level API is located in the Subsembly.SmartCard.PcSc namespace. The PC/SC Workgroup level API

conveniently exposes native Windows API residing in winscard.dll to a .NET environment. The architecture as well as the

naming of classes and symbols is kept similar to the PC/SC Workgroup specification to emphasise the close relationship

between managed and unmanaged code.

The following figure provides an overview of the primary classes of the Subsembly.SmartCard.PcSc namespace.

The internal class WinSCard provides the P/Invoke stubs to the native API implemented in Microsoft Windows' native

winscard.dll. Note that the WinSCard class is not available to applications.

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 16 of 21

CT-API level API

The CT-API level API is located in the Subsembly.SmartCard.CtApi namespace. The CT-API is a very simple procedural API.

In order to resemble this as closely as possible, the CT-API level API consists of a single primary class CtApiWrapper. All

CT-API functionality is provided through this class.

The CtApiWrapper includes convenience methods for the complete range of CT-BCS defined operations and the B1

defined operations.

Instances of the CtApiWrapper class can be created for any local CT-API DLL with arbitrarily named function names.

Actually, the name and path the of CT-API DLL and optionally the names of the three CT-API functions CT_init, CT_data,

and CT_close are provided to the constructor of the CtApiWrapper class. The CtApiWrapper constructor dynamically

creates an assembly with appropriate P/Invoke stubs at runtime using Reflection Emit technology.

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 17 of 21

Deployment

CardWerk SmartCard API (Professional) consists of the single assembly SmartCard.dll. In addition, there can be optional

satellite resource DLLs that contain the localised texts for the user interface. In order to deploy the CardWerk SmartCard

API (Professional) all files just have to be copied into your main application directory.

Besides the English resources built into SmartCard.dll itself, the current distribution includes a German resources

satellite assembly. Further resource languages can be added in future releases.

The deployment of the complete CardWerk SmartCard API (Professional) consists of the following files:

SmartCard.dll
de/SmartCard.resources.dll

The German resources satellite assembly is located in the file SmartCard.resources.dll and must be copied into a

subdirectory named "de". The directory name must reflect the target language, in order to be picked up by the main

assembly. This guarantees that the .NET Framework will automatically use German resources on a German Windows

environment.

Please contact us if you need support for an additional language. We can send you the English text file for translation and

will then include the additional resource in the subsequent release.

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 18 of 21

Card Terminal Configuration

The CardWerk SmartCard API (Professional) card terminal configuration is stored in a local XML file with the filename

"Registry.xml". The file is located in the Subdirectory Subsembly/SmartCard which itself is located in the common

application data folder. The location of the common application data folder is determined through the following .NET

method call:

Environment.GetFolderPath(Environment.SpecialFolder.CommonApplicationData);

The actual location depends on the Windows version and Windows localisation. On a German Windows XP system the file

"Registry.xml" is found in:

\Dokumente und Einstellungen\All Users\Anwendungsdaten\Subsembly\SmartCard

On an American Windows XP system "Registry.xml" resides in:

\Documents and Settings\All Users\Application Data\Subsembly\SmartCard

The registry file is solely maintained by the CardTerminalRegistry class and must never be accessed directly from code.

This is mainly because future versions of the CardWerk SmartCard API (Professional) may be subject to changes on format

level.

In order to plug in a custom implementation of the ICardTerminal interface for a proprietary smart card reader not

supported by CardWerk SmartCard API (Professional), the configuration file must be manually edited. Assuming a

specialized ICardTerminal implementation for the smart card reader „XYZreader“ has been created as a class with the

fully qualified name SmartCard.XYZreader.YYZreaderCardTerminal in an assembly named SmartCard.XYZreader.dll, the

following entry must be added to the configuration file below the <CardTerminalRegistry> root node:

<CardTerminal>
 <AssignedName>My XYZreader Reader</AssignedName>
 <AssemblyName>SmartCard.XYZreader.dll</AssemblyName>
 <ClassName>SmartCard.XYZreader.XYZreaderCardTerminal</ClassName>
 <Enabled>true</Enabled>
 <UseSecurePin>false</UseSecurePin>
 <Config>
 <ReaderPort>4</ReaderPort>
 <ProprietaryParameter>BEEP</ProprietaryParameter>
 </Config>
</CardTerminal>

The element <Config> contains proprietary configuration elements that are only understood by the

XYZreaderCardTerminal class and are ignored by the CardWerk SmartCard API (Professional) itself. In this example an

element <ReaderPort> is used to configure the port where the smart card reader is actually connected. The CardWerk

SmartCard API (Professional) passes this information to the XYZreaderCardTerminal class through the method

ICardTerminal.Init. In this case the <ReaderPort> element may match a constant defined in XYZreader.h to indicate a

reader interface such a COM port or USB.

In order to have the CardWerk SmartCard API (Professional) successfully load the indicated class, one must deploy the

SmartCard.XYZreader.dll assembly together with SmartCard.dll.

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 19 of 21

In any case, it is useful to understand the format of the registry file for diagnostic reasons. The format of the registry file

is defined in the fully commented XML Schema file CardTerminalRegistry.xsd that is included in the CardWerk SmartCard

API (Professional) development kit and shown here.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- TODO
 Strings should have further constraints!
 Can we define default values?
 -->

 <!-- The CardTerminalRegistry is just a sequence of CardTerminalConfig elements.
 It may contain zero or any number of entries. The CardTerminalRegistry is the root
 element of the persistent card terminal registration XML file.
 -->
 <xsd:element name="CardTerminalRegistry">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="CardTerminalConfig" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!-- The CardTerminalConfig element provides all information about a card
 terminal that has been configured for CardWerk SmartCard API for .NET.
 -->
 <xsd:element name="CardTerminalConfig">
 <xsd:complexType>
 <xsd:sequence>

 <!-- Name that uniquely identifies a card terminal to the user. This
 name may be arbitrarily assigned by the user, as long as it is unique
 within the entire CardTerminalRegistry.
 -->
 <xsd:element name="AssignedName" type="xsd:string" />

 <!-- Name of the .NET assembly that contains the ICardTerminal
 implementation for this card terminal. If this is missing, then the
 class is sought in the currently executing assembly.
 -->
 <xsd:element name="AssemblyName" type="xsd:string" minOccurs="0" />

 <!-- Name of the .NET class that contains the ICardTerminal
 implementation for this card terminal.
 -->
 <xsd:element name="ClassName" />

 <!-- Flag that indicates whether this card terminal shall be used or
 not. If absent, then the card terminal is enabled. Only if this is
 explicitly set as false, then this card terminal configuration will be
 ignored.
 -->
 <xsd:element name="Enabled" type="xsd:boolean" />

 <!-- Optional flag that indicates whether the secure PIN entry of a
 class 2 card terminal shall be used. If this is absent, then the secure
 PIN entry will be used when supported by the card terminal, i.e. the flag
 will be assumed as true. If this flag is "true" and the card terminal does
 not support secure PIN entry, then nothing will happen, we will just resort
 to unsecure PIN entry.
 -->
 <xsd:element name="UseSecurePin" type="xsd:boolean" minOccurs="0" />

 <!-- This element contains additional configuration options that are
 particular to the card terminal class.
 -->
 <xsd:element ref="Config" minOccurs="0" />

 </xsd:sequence>
 </xsd:complexType>

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 20 of 21

 </xsd:element>

 <!-- The Config element is just a container for any driver specific
 configuration elements
 -->
 <xsd:element name="Config">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any maxOccurs="unbounded" processContents="lax" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!--
 Configuration elements of CT-API entry
 -->

 <!-- The CtApiDll element provides the filename of the shared CT-API library,
 optionally including its complete path. If only the filename without the path is
 given, then the CT-API library must be located somewhere in the default shared
 library search path of the system (e.g. on a Windows system in the Windows or
 System directories).
 -->
 <xsd:element name="CtApiDll" type="xsd:string" />
 <!-- The CtApiPort element provides a port number to be passed to the CT_init
 function of the CT-API.
 -->
 <xsd:element name="CtApiPort" type="xsd:unsignedShort" />
 <!-- The CtInitProcName provides an alternative procedure name for the CT_init
 function of the CT-API (see Annex A of the CT-API specification. If this element is
 omitted, then it defaults to CT_init.
 -->
 <xsd:element name="CtInitProcName" type="xsd:string" />
 <!-- The CtDataProcName provides an alternative procedure name for the CT_data
 function of the CT-API (see Annex A of the CT-API specification. If this element is
 omitted, then it defaults to CT_data.
 -->
 <xsd:element name="CtDataProcName" type="xsd:string" />
 <!-- The CtCloseProcName provides an alternative procedure name for the CT_close
 function of the CT-API (see Annex A of the CT-API specification. If this element is
 omitted, then it defaults to CT_close.
 -->
 <xsd:element name="CtCloseProcName" type="xsd:string" />

 <!-- This just shows what is expected in the Config element by the CT-API
 driver...
 -->
 <xsd:element name="CtApiConfig">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="CtApiDll" />
 <xsd:element ref="CtApiPort" />
 <xsd:element ref="CtInitProcName" minOccurs="0" />
 <xsd:element ref="CtDataProcName" minOccurs="0" />
 <xsd:element ref="CtCloseProcName" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!--
 Configuration elements of PC/SC Workgroup entry
 -->

 <xsd:element name="PcScReaderName" type="xsd:string" />

 <!-- This just shows what is expected in the Config element by the PC/SC
 driver...
 -->
 <xsd:element name="PcScConfig">
 <xsd:complexType>
 <xsd:sequence>

CardWerk SmartCard API (Professional) Developer Guide

© Copyright 2004-2017 CardWerk Technologies Page 21 of 21

 <xsd:element ref="PcScReaderName" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!--
 CT-API Product specification

 This is not used yet, but may be used to define the configuration options of a CT-API
 smart card reader in a future release.
 -->

 <xsd:element name="CtApiSpec">
 <xsd:complexType>
 <xsd:sequence>
 <!-- The CtApiDll must provide the filename of the CT-API DLL excluding
 the path, e.g. "CT32.DLL".
 -->
 <xsd:element ref="CtApiDll" />
 <!-- The CtApiPort element may be used to provide a list of applicable
 port numbers from which the user shall choose. If only a single value is
 given, then it is implicitly used by the application without giving the
 user a choice. If this element is not provided, then the user may choose
 any port number.
 -->
 <xsd:element ref="CtApiPort" minOccurs="0" maxOccurs="unbounded" />
 <!-- If the CT-API DLL uses other procedure names than CT_init, CT_data,
 and CT_close, then they may be provided by the following elements. For every
 missing element, the default procedure name is assumed.
 -->
 <xsd:element ref="CtInitProcName" minOccurs="0" />
 <xsd:element ref="CtDataProcName" minOccurs="0" />
 <xsd:element ref="CtCloseProcName" minOccurs="0" />
 <!-- In order to be able to uniquely identify a particular CT-API card
 terminal its manufacturer data object value must be provided. If this
 element is given, it must provide at least the first five bytes (CT
 manufacturer). The idea is, that the CtApiDll in combination with the
 CtManufacturer provide a unique identification of the card terminal to the
 application.
 -->
 <xsd:element ref="CtManufacturer" minOccurs="0" />
 <!-- If this driver/device has parallel support for CT-API and PC/SC then
 this element shall be used to provide the associated PC/SC reader name
 without its number suffix, e.g. "Cherry SmartBoard XX44". This is useful to
 avoid parallel access through both APIs and to enable simple switching from
 CT-API to PC/SC and vice versa.
 -->
 <xsd:element ref="PcScReaderName" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

